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Isolated post-challenge diabetes (IPD, 2h-PG ≥11.1 mmol/L and FPG <7.0 mmol/L) is often ignored in
screening for diabetes by fasting plasma glucose (FPG) levels. The aim of this study was to investigate
the metabolic profiles of serum free fatty acids (FFAs) and to identify biomarkers that can be used to
distinguish patients with IPD from those with type 2 diabetes mellitus (T2DM) or healthy control indi-
viduals. FFA profiles of the subjects were investigated using gas chromatography–mass spectrometry
ree fatty acid
iomarker

solated post-challenge diabetes
ype 2 diabetes mellitus
as chromatography–mass spectrometry

(GC–MS). Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA)
were used for classification and prediction among the three groups. The predictive correct rates were
92.86% for IPD and healthy control individuals and 90.70% for T2DM and healthy control individuals,
indicating that PLS-DA could satisfactorily distinguish IPD individuals from healthy controls and those
with T2DM. Finally, palmitic acid, stearic acid, oleic acid, linoleic acid and �-linolenic acid were iden-
tified as potential biomarkers for distinguishing IPD from healthy control and T2DM individuals. These

ht be
potential biomarkers mig

. Introduction

Currently, more than 10% of the global elderly population suf-
ers from diabetes; of these individuals, 90% have type 2 diabetes

ellitus (T2DM). T2DM can be diagnosed by fasting plasma glu-
ose (FPG) ≥7.0 mmol/L or 2-h postprandial plasma glucose (2h-PG)
11.1 mmol/L using a 75 g oral glucose tolerance test (OGTT) [1,2].
owever, in large-scale screening of diabetes or in routine physical
xamination, fasting plasma is usually collected to determine FPG
or diabetes screening, because FPG is relatively convenient and
asily obtained. For this reason, many patients with isolated post-
hallenge diabetes (IPD, 2h-PG ≥11.1 mmol/L and FPG <7.0 mmol/L)
re often ignored. In the DECODE (Diabetes Epidemiology: Col-
aborative Analysis of Diagnostic Criteria in Europe) study, 50%
atients with 2h-PG ≥11.1 mmol/L had a FPG <7.0 mmol/L [3]. In
he Third National Health and Nutrition Examination Survey, 41%
f previously undiagnosed T2DM patients aged 40–74 years had
PG <7.0 mmol/Land 2h-PG ≥11.1 mmol/L [4]. In addition, increas-

ng evidence shows that IPD is associated with increased risk of
ardiovascular disease and diabetic complications [5,6]. Therefore,
t is important to identify biomarkers that are present in the fasting
erum and that can be used to identify IPD subjects.

∗ Corresponding author. Tel.: +86 451 8750 2801; fax: +86 451 8750 2885.
E-mail address: Sun2002changhao@yahoo.com (C. Sun).
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helpful for diagnosis and characterization of diabetes.
© 2010 Elsevier B.V. All rights reserved.

It is well known that diabetes is closely associated with
metabolic lipid disorders, especially those involving free fatty acids
(FFAs). Increased blood FFA levels have a central role in the devel-
opment of diabetes, leading to insulin resistance (IR), impaired
insulin signal pathways and destruction of �-cells [7–9]. However,
different kinds of FFA have different or even opposite effects on
the progress of IR and T2DM. For example, saturated fatty acids
(SFA) worsened insulin sensitivity and increased the risk of T2DM,
but polyunsaturated fatty acids (PUFA), particularly n-3 fatty acids,
improved IR [10] and are potentially protective against T2DM [11].
On the other hand, plasma FFA levels are likely to increase with
increases in blood glucose level and hepatic glucose production in
patients with diabetes [12]. Previous studies have suggested that
types and levels of FFAs have differing roles in the development of
diabetes and the investigation of the relationship between specific
types of FFAs and diabetes is more important than that of the total
FFA level. Therefore, an accurate method is necessary to study the
profile of FFAs and identify biomarkers that can distinguish healthy
control, IPD and T2DM individuals.

Metabolomics, defined as the quantitative measurement of all
low-molecular-weight metabolites in an organism at a specified

time under specific environmental conditions [13], has been suc-
cessfully applied to many fields such as disease diagnosis [14,15],
biomarker screening [16,17], and nutrition research [18]. Over the
past few years, metabolomics has combined data-rich advanced
analytical techniques such as nuclear magnetic resonance (NMR)

dx.doi.org/10.1016/j.jchromb.2010.08.035
http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
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Table 1
Clinical characteristics and dietary intake of 105 subjects (mean ± SD).

Parameter Health control (n = 50) IPD (n = 52) T2DM (n = 53)

Age (years) 55.7 ± 10.4 54.7 ± 10.6 53.5 ± 10.5
Sex (female/male) 30/20 31/21 31/22
Smoker/non-smoker 17/34 16/36 18/35
Alcohol consumption (%) 37.25 40.38 39.54
Protein (g/d) 82.29 ± 26.15 83.04 ± 25.76 83.04 ± 26.08
Fat (g/d) 90.87 ± 32.24 91.86 ± 36.70 91.86 ± 36.70
Carbohydrate (g/d) 342.28 ± 129.26 341.48 ± 128.92 339.98 ± 127.02
BMI (kg/m2) 22.1 ± 1.6 26.2 ± 3.8 25.8 ± 3.1
SBP (mmHg) 74.3 ± 6.7 81.3 ± 11.9 83.3 ± 11.7
DBP (mmHg) 113.1 ± 6.3 142.8 ± 24.9 142.1 ± 2.6
FPG (mmol/L) 4.2 ± 0.5 5.0 ± 0.6 10.8 ± 5.1
2h-PG (mmol/L) 4.6 ± 1.0 14.9 ± 3.9 19.1 ± 5.1
TG (mmol/L) 0.9 ± 0.3 2.1 ± 1.1 2.9 ± 3.5
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TC (mmol/L) 4.2 ± 0.5

BP: systolic blood pressure; DBP: diastolic blood pressure; BMI: body mass index; TG
lasma glucose.

pectroscopy and mass spectrometry with multivariate statistical
nalysis. Gas chromatography–mass spectrometry (GC–MS) is a
elatively low-cost alternative that provides high separation effi-
iency to resolve the complex biological mixtures and is a common
nalytical tool in metabolomics. This technique has been used in
rofiling of the metabolites of some diseases as well as serum fatty
cids [19,20].

In the present study, we used GC–MS technology to investi-
ate the comprehensive metabolic profile of human serum FFAs.
ultivariate statistical analyses, including to principal component

nalysis (PCA) and the partial least squares-discrimination analy-
is (PLS-DA), were used to map the distribution of all human serum
amples and identify healthy control individuals, IPD patients and
2DM patients. The results indicated that the predictive power,
ensitivity and specificity of the PLS-DA model were better than
hose of the PCA model. Fatty acid metabolic profile analysis
ombined with PLS-DA could be useful for identifying potential
iomarkers and diagnosis of IPD and T2DM.

. Materials and methods

.1. Subjects
Fifty-three patients with newly diagnosed T2DM and 52 patients
ith IPD were selected according to FPG and 2h-PG levels from
population-survey study to investigate the prevalence and risk

actors of diabetes in Harbin. All subjects were recruited from com-
unities of Harbin, Heilongjiang Province, in the North of China.

able 2
he equation and the correlation coefficient of fatty acids.

Fatty acid Calibration equation Regression coefficient

C14:0 Y = 0.4414X − 0.2206 0.9964
C16:0 Y = 0.0289X + 0.418 0.9957
C16:1 Y = 0.0425X − 0.0822 0.9996
C18:0 Y = 0.0248X − 0.0479 0.9992
C18:1 Y = 0.0319X − 0.4984 0.9991
C18:2 Y = 0.0331X − 0.2653 0.9999
�-C18:3 Y = 0.2107X − 0.4323 0.9995
C18:3 Y = 0.0689X − 0.0033 0.9981
C20:2 Y = 0.0483X − 0.0267 0.9988
C20:4 Y = 0.0269X − 0.034 0.9997
C20:5 Y = 0.0242X + 0.0328 0.9953
C22:5 Y = 0.0069X + 0.0051 0.9975
C22:6 Y = 0.0241X − 0.1348 0.9993
C24:0 Y = 0.0201X + 0.0483 0.9976
C24:1 Y = 0.0117X + 0.013 0.9967

X: the quality of fatty acids; Y: relative peak area = peak area of fatty acid/peak area of in
5.1 ± 1.0 5.01 ± 1.2

lycerides; TC: total cholesterol. FBG: fasting plasma glucose; 2h-PG: 2h-postprandial

T2DM patients were diagnosed according to the 1997 American
Diabetes Association (ADA) criteria (Report of the expert committee
on the diagnosis and classification of diabetes mellitus 1997). The
cutoff value for FPG was 7.0 mmol/L and for 2h-PG was 11.1 mmol/L.
The 50 healthy adults in the healthy control group were from the
same population-survey study of patients and were not related to
the patients.

There were no significant differences among the three groups
in age, sex, smoking, alcohol consumption and dietary intake
(Table 1). In addition, body mass index (BMI), triglyceride (TG) level,
total cholesterol (TC) level, systolic blood pressure (SBP) and dias-
tolic blood pressure (DBP) were not significantly different between
IPD and T2DM individuals (Table 1). The study was approved by
the Ethics Committee of Harbin Medical University and informed
consent was obtained from each participant.

2.2. Chemicals and regents

Fatty acid standards were purchased from Sigma (St Louis,
MO, USA, ≥99% purity): myristic acid (C14:0), palmitic acid
(C16:0), palmitoleic acid (C16:1n-7), heptadecanoic acid
(C17:0), stearic acid (C18:0), oleic acid (C18:1n-9), linoleic
acid (C18:2n-6), linolenic acid (C18:3n-3), �-linolenic acid

(C18:3n-6), cis-11,14-eicosadienoic acid (C20:2n-6), arachi-
donic acid (C20:4n-6), cis-5,8,11,14,17-eicosapentaenoic acid
(C20:5n-3), cis-7,10,13,16,19-docosapentaenoic acid (C22:5n-6),
cis-4,7,10,13,16,19-Docos-ahexaenoic acid (C22:6n-3), tetra-
cosanoic acid (C24:0), and selacholeic acid (C24:1n-9). The

Range of quality (�g/mL) Limit of detection (�g/mL)

2.96–25.00 0.05
249.78–750.5 0.03

25.10–100.10 0.08
61.00–253.00 0.03

150.00–750.00 0.04
250.00–1000.00 0.05

5.30–25.60 0.08
1.10–50.00 0.08
5.30–31.00 0.08

50.00–300.00 0.05
4.90–50.00 0.05
2.50–56.00 0.06

20.00–100.00 0.07
1.20–15.50 0.08
1.45–5.80 0.05

ternal standard.
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Table 3
The repeatability of the calibration samples (n = 6).

Fatty acids The true
concentration

Measured
concentration

CV% Bias%

C14:0 5.00 4.64 ± 0.24 5.17 92.80
C16:0 350.00 352.24 ± 19.26 5.47 100.61
C16:1 50.00 48.17 ± 1.69 3.51 96.34
C18:0 150.00 142.38 ± 8.29 5.82 94.90
C18:1 300.00 304.26 ± 17.36 5.71 101.42
C18:2 450.00 443.37 ± 34.28 7.73 98.53
�-C18:3 15.00 14.02 ± 0.91 6.49 93.47
C18:3 10.00 9.34 ± 0.56 6.00 93.40
C20:2 15.00 14.13 ± 0.42 2.97 94.20
C20:4 150.00 147.67 ± 8.67 5.87 98.45
C20:5 5.00 5.19 ± 0.37 7.13 103.80
C22:5 10.00 9.07 ± 0.26 2.87 90.70
C22:6 50.00 48.05 ± 3.07 6.39 96.10
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C24:0 5.00 4.17 ± 0.25 6.00 83.40
C24:1 5.00 4.09 ± 0.14 3.42 81.80

alues shown are mean ± SD for fatty acid concentration (�g/mL)

olution 10% H2SO4/CH3OH was freshly prepared by diluting
2SO4 (purity: ≥98.0%) in chromatographic grade methanol.
-Hexane (chromatographic grade), ethyl acetate (analytical
eagent) and sodium chloride (analytical reagent) were purchased
rom Tianjin Guangfu Chemical Reagent Co (Tianjin, China).

.3. Preparation of standard solutions and method validation

Stock solutions of the 15 fatty acids and an internal standards
heptadecanoic acid) were prepared at 1000.00 �g/mL in methanol.

orking solutions were prepared with methanol at concentrations
f 1.10–1000.00 �g/mL (see Table 2). All standard solutions were
tored at −20 ◦C until required.

Calibration samples were prepared by spiking with 15 different
oncentrations of fatty acids standards. Limit of detection (LOD)
ere defined as lowest concentrations with signal-to-noise (S/N)

atios of 10. Repeatability of calibration samples was expressed
s coefficients of variation (CV%) and percentage biases (bias%),
espectively (see Table 3).

.4. Sample preparation

Fasting blood samples were immediately centrifuged at
,000 × g for 10 min at room temperature and then stored at −80 ◦C
ntil analysis. Samples were randomly selected for FFA extraction
nd GC–MS acquisition. Briefly, aliquots (200 �L) of serum were
piked with internal standard (I.S.) working solution (200 �L hep-
adecanoic acid C17:0 200 �g/mL), and 1 mL 0.05% H2SO4 was then
dded to deposit protein. The FFA was extracted using 3 mL ethyl
cetate and shaking with a vortex mixer for 60 s, then centrifuged at
,000 × g for 10 min at room temperature. The ethyl acetate phase
as evaporated to dryness under N2. Following the addition of 2 mL

0% H2SO4–CH3OH and incubation in a 62 ◦C water bath for 2 h,
mL saturated sodium chloride and 2 mL hexane were sequentially
dded and mixed for 60 s to obtain the fatty acid methyl esters. Sam-
les were evaporated to dryness under N2 gas, and 100 �L hexane
as added to each tube prior to analysis.

.5. Gas chromatography–mass spectrometry

GC–MS analysis was performed using a TRACE gas chromato-

raph with a Polaris Q mass spectrometer (Thermo Finnigan,
ustin, TX, USA). Helium was used as the carrier gas. A split injec-

or (the split ratio being 1:10) at 230 ◦C was used to add the sample
1.0 �L) onto a J&W DB-WAX (30 m × 0.25 mm I.D., 0.25 �m film
hickness) capillary column. Fatty acid methyl esters were sepa-
878 (2010) 2817–2825 2819

rated at constant flow with the following oven program: (a) initially
50 ◦C for 2 min; (b) temperature was increased at a rate of 10 ◦C/min
up to 200 ◦C; (c) maintained at 200 ◦C for 10 min; (d) increased
at a rate of 10 ◦C/min up to 220 ◦C; (e) maintained at 220 ◦C for
15 min. The transfer line was maintained at 230 ◦C. The ion trap
mass spectrometer was operated under electron bomb ionization
(EI) mode. Mass spectra of m/z 30–450 were collected by full scan
mode with 0.58 s/scan velocity. Solvent delay time was 5 min. The
source temperature was 230 ◦C with the electron energy at 70 eV.

2.6. Statistical analysis

2.6.1. One-way ANOVA analysis
An internal standard method was used for quantitative analysis

in this study and all of the peaks exceeding a signal-to-noise (S/N)
of 10 were selected. The results were presented as mean ± standard
deviation (SD). Data that were not normally distributed were
logarithmically transformed to obtain normal distribution before
analysis. Continuous variables were analyzed by one-way ANOVA
with Tukey’s test. P < 0.05 was considered statistically significant.

2.6.2. Principal component analysis (PCA)
The FFA data were analyzed by PCA (SIMCA-P, Umea, Sweden)

to establish any ‘groupings’ with respect to three groups including
healthy control, IPD and T2DM. A PCA model was constructed with
all samples. The score plot of PC1 versus PC2 was used to examine
separation or clusters for the three groups.

2.6.3. Partial least square-discriminant analysis (PLS-DA)
The PLS is described as the regression extension of PCA. Instead

of describing the maximum variation in the measured data (X) for
PCA, PLS attempts to derive latent variables and imitates princi-
pal components (PCs); this maximizes the co-variation between
the exploratory variable (X) and the response variable (Y). PLS-DA
that discriminates the known classes in a calibration set is a spe-
cial form of PLS modeling that aims to identify the variables and
directions in multivariate space. In PLS-DA, an indicator Y matrix of
category variables contains as many columns as there are known
classes in the calibration set—each class has a column in Y. In the
current work, PLS-DA was used to generate models for distinguish-
ing the three groups. The metabolites with the greatest variable
importance in projection (VIP) values [21] (VIP > 1.0) in the model
were regarded as potential biomarkers.

3. Results and discussion

3.1. Method validation

Method validation was conducted by evaluating the linear-
ity, limit of detection (LOD), repeatability of the present method
using spiked calibration samples prepared from 15 free fatty
acids. The method had excellent linearity (correlation efficient r,
0.9953–0.9999). LODs ranged from 0.03 to 0.08 �g/mL (Table 2).
Repeatability was determined by analyzing calibration samples.
CV% ranged from 2.87% to 7.73%, whereas bias% ranged from 81.80%
to 103.80% (Table 3).

3.2. GC–MS profiles of serum samples

The quantitative results of FFA analysis of the three groups

are presented in Table 2. Fifteen types of FFA were detected in
the serum of all samples, including four saturated fatty acids
(C14:0, C16:0, C18:0 and C24:0), three monounsaturated fatty acids
(C16:1n-7, C18:1n-9 and C24:1n-9) and eight polyunsaturated
fatty acids (C18:2n-6, C18:3n-6, C18:3n-3,C20:2n-6, C20:4n-6,
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Table 4
Quantitative analysis of FFA of the three groups.

FFA (�g/mL) Control (n = 50) IPD (n = 52) T2DM (n = 53)

C14:0 3.61 ± 0.52 3.93 ± 0.64* 4.15 ± 0.80**

C16:0 356.76 ± 79.39 510.28 ± 143.57** 570.83 ± 174.39**,#

C16:1 40.38 ± 8.79 52.05 ± 18.57** 57.40 ± 18.80**

C18:0 87.64 ± 28.38 117.52 ± 42.98** 161.98 ± 80.39**,##

C18:1 268.96 ± 41.67 430.38 ± 128.98** 510.73 ± 220.91**,##

C18:2 455.57 ± 71.06 870.44 ± 185.47** 898.44 ± 208.18**

�-C18:3 11.14 ± 0.67 11.96 ± 1.05** 12.89 ± 2.91**,##

C18:3 5.50 ± 2.40 13.83 ± 4.84** 19.71 ± 13.64**,##

C20:2 14.37 ± 4.34 15.21 ± 5.40 14.46 ± 6.85
C20:4 160.48 ± 37.10 201.11 ± 48.18** 252.24 ± 53.63**

C20:5 2.54 ± 2.18 4.78 ± 3.69 6.00 ± 4.01*

C22:5 11.59 ± 7.44 21.01 ± 17.18** 23.39 ± 14.65**

C22:6 51.64 ± 14.09 58.14 ± 15.25 61.59 ± 15.49**

C24:0 2.84 ± 2.56 4.49 ± 1.06** 4.14 ± 1.24**

C24.:1 1.84 ± 0.98 3.00 ± 1.97** 3.26 ± 1.83**

Total 1474.85 ± 157.90 2318.14 ± 488.38** 2601.22 ± 643.25**
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* P < 0.05 compared with healthy control.
** P < 0.001 compared with healthy control.
# P < 0.05 compared with IPD.

## P < 0.001 compared with IPD.

20:5n-3, C22:5n-6 and C22:6n-3). Most FFA concentrations dif-
ered significantly (P < 0.05) between healthy control and IPD
ndividuals and between healthy control and T2DM individuals.
here were significant differences in five FFAs between IPD and
2DM individuals. For the total FFA (the sum of the fifteen detected
FAs), healthy controls had lower total FFA levels than did IPD and
2DM individuals, and there was a significant difference in total
FA levels between IPD and T2DM individuals (P < 0.001). As the
ata showed different FFA profiles (Table 4), PCA and PLS-DA were
sed for discrimination of the three groups and identification of
otential biomarkers.

.3. Discrimination of the three groups by PCA

FFA profiles were analyzed by PCA. The score plot of PCA rep-
esented the distribution of all samples. In Fig. 1a, data of three
amples were discarded because they were outside of the 95%
onfidence interval (the ellipse). The first two components of the
odel (PC1 and PC2) explained 57.4% of the variance (R2 = 0.574,

nd Q2 = 0.386). As shown in Fig. 1a, many samples in different
roups were scattered and could not be completely separated.
his is because PCA finds a lower dimensional space capturing the
aximum amount of variance in an input data matrix, X, without
osing any useful information. However, the excessive number of
rrelevant variables could result in confusion during sample dis-
rimination [22]. PLS is a similar approach to PCA except it reduces
he dimension of both input and output data matrices, X and Y, by
apturing the maximum amount of covariance between X and Y to

able 5
arameters of PLS-DA models based on the date from sub-comparisons.

Groups Component R2X R

Healthy control-IPD 3 0.567 0
Healthy control-T2DM 3 0.582 0
IPD-T2DM 3 0.541 0

omponent: number of significant component calculated by seven times cross-validation

able 6
lassification of IPD, T2DM and health control by PLS-DA method.

Recognition rate Prediction rate

Healthy control-IPD 91.67%(55/60) 92.86%(39/42)
Healthy control-T2DM 90.00%(54/60) 90.70%(39/43)
IPD-T2DM 84.61%(55/65) 77.50%(31/40)
best predict Y. Therefore, the discrimination analysis based on PLS
would be expected to more powerfully separate the three groups
than would PCA.

3.4. Discrimination of the three groups by PLS-DA

PLS-DA is a multivariate classification method based on PLS, the
regression of PCA. PLS-DA explains maximum separation between
defined class samples in the data set [23]. After crude screening by
PCA, a PLS-DA model was constructed for classification of the three
groups 16 type of fatty acids used of latent variable. The score plot
of PLS-DA is shown in Fig. 1b. The PLS-DA model explained 62.2% of
the variance (R2 = 0.622, and Q2 = 0.526); this was more than that
explained by the PCA model. The samples in healthy control and
other groups were separated clearly. However, owing to the poor
recognition rate (50.46%) for ‘all group’ discrimination, three sub-
comparisons were performed to compare healthy control and IPD
individuals, healthy control and T2DM individuals, and IPD and
T2DM individuals. The living form of mapping a spatial FFA pro-
file was shown in three-dimensional (3D) data matrices (Fig. 2a–c).
The results of PLS-DA showed that the samples in healthy control
versus IPD and T2DM individuals (Fig. 2a and b) were separated
clearly; there was also acceptable separation in the comparison of

IPD and T2DM individuals (Fig. 2c). Furthermore, all the parame-
ters of PLS-DA models are listed in Table 4. The values of R2 and Q2

in different models were more than 0.5, which indicates that these
models were suitable for these recognition analysis. The permuta-
tion testing (999 times) [24] (Fig. 3, Table 5) was operated to test

2Y Q2Y R2-intercept Q2-intercept

.859 0.838 0.336 −0.43

.826 0.793 0.326 −0.397

.513 0.645 0.311 −0.367

.

Sensitivity Specificity Correct rate

96.00%(48/50) 88.46%(46/52) 90.16%(94/102)
92.00%(46/50) 88.67%(47/53) 90.29%(93/103)
78.85%(41/52) 84.91%(45/53) 81.90%(86/105)
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C18:1, C18:2 and C18:3 as index substances may be more accurate
and sensitive than total FFA in the diagnosis of diabetes. Therefore,
according with Table 4, the concentration ranges of FFAs biomark-
ers are proposed in this study (Table 8).

Table 7
Identification results of the potential biomarkers discovered by VIP values.

Groups Biomarkers VIP values P-Valuesa

Healthy control-IPD C18:2 1.47 2.53E−22

C18:3 1.39 3.84E−18

C18:1 1.10 1.49E−8

Healthy control-T2DM C18:2 1.29 1.49E−7

C18:3 1.21 7.53E−13

−7
Fig. 1. Score plot from multivariate statistical analysis of the thr

he over-fitting of PLS-DA after modeling the data. The low value
f intercepts, R2 and Q2, showed that the model is not over-fitted.

To determine the effect of different data preprocessing
echniques on the predictive ability of the resulting modes, approx-
mately two-thirds of the samples (the “training set”) were selected
andomly to construct a PLS-DA model that could then be used to
redict the class membership of the remaining one-third of samples
the ‘test set’). The classification results are shown in Table 6. The
esults showed relatively high predictive ability, with 92.86% and
0.70% prediction rates for healthy control versus IPD and T2DM

ndividuals, respectively. The prediction rate for identification of
PD and T2DM individuals was 77.50%. All recognition and correct
ates were greater than 81.90%. Furthermore, the specificity for pre-
iction was more than 84.91% in all PLS-DA models. All these results

ndicate that discrimination models obtained by PLS-DA had good
ecognition and predictive abilities.

.5. Potential biomarkers

In this study, a PLS-DA model was used for classification of

ealthy control, IPD and T2DM and the identification of poten-
ial biomarkers. The VIP [18] value was used to reflect the variable
mportance and identify potential biomarkers. The variables with
IP values more than 1.0 and with standard deviations less than the
ean values were selected as possible biomarker candidates and
ups: (a) PCA; (b) PLS-DA; health control (�); IPD (�); T2DM (�).

are described in Table 7. It is interesting that we identified three
types of FFA (C18:1, C18:2 and C18:3) as potential biomarkers for
identification of healthy control versus IPD and T2DM individuals.
Although total FFA is important for clinical diagnosis of diabetes,
the VIP value of total FFA was lower (VIP value <0.9) than those
of the three identified biomarkers. This indicates that the use of
C18:1 1.08 1.49E

IPD-T2DM C18:2 2.03 0.181
C18:0 1.39 0.0014
C16:0 1.05 0.025

a P-Values were calculated by ANOVA analysis.
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Fig. 2. 3D scores plots of free fatty acids from PLS-DA of models: (a and b) healthy
control (black); IPD, T2DM (red); (c) IPD (black); T2DM (red).

Table 8
The concentration ranges of the FFA biomarkers in three groups.

Biomarkers Healthy control IPD T2DM
C18:2 350.00–550.00 650.00–800.00 800.00–1250.00
C18:3 2.50–8.00 9.00–20.00 20.00–40.00
C18:1 200.00–300.00 400.00–550.00 550.00–800.00

For IPD versus T2DM, the VIP values of C18:2, C16:0 and C18:0
fatty acids were more than 1.0. However, there was no significant
difference in the concentration of C18:2 between IPD and T2DM
individuals, so C16:0 and C18:0 were selected as potential biomark-
ers. Moreover, the potential biomarkers can also be identified from
the PLS-DA model loadings plot. The loadings plot (Fig. 4) identified
the variables that strongly contribute to the separation of classes.
In turn, these fatty acids might be biomarker candidates. From the
loadings plot, we can also detect the potential biomarkers furthest
from the origin. The potential biomarkers found in the loadings
plot were in agreement with those identified by VIP values. Thus,
patients who have higher levels of C18:2 are likely to be diagnosed
with IPD or T2DM, and it is necessary to determinate C16:0 and
C18:0 levels to help discriminate IPD and T2DM.

There have been increasing numbers of studies on the use of FFA
metabolic profiles and biomarkers to distinguish T2DM patients
from healthy control individuals. Lun-Zhao et al. suggested that
FFAs might be suitable for classification of T2DM patients and
healthy control individuals, and identified three FFAs as poten-
tial biomarkers for discrimination of T2DM patients and healthy
control individuals [20]. Moreover, it has also been reported that
the organic acids in urine, and glucose, phosphate and linoleic
acid in plasma might be potential biomarkers to distinguish T2DM
patients from healthy control individuals [25,26]. Although these
studies have investigated the relationship between fatty acids and
T2DM and identified some possible biomarkers that can be used
to distinguish T2DM and healthy control individuals, none of them
was involved in the differences of FFA profiles and distinguishing
biomarkers of healthy control versus IPD patients. By contrast, in
our study, the biomarkers identified will help us identify patients
with diabetes from large populations, and be particularly useful for
identification of IPD patients.

The potential biomarkers C16:0 (palmitic acid), C18:0 (stearic
acid), C18:1 (oleic acid,n-9), C18:2 (linoleic acid, n-6) and C18:3
(�-linolenic acid, n-3) are all important bioactive molecules, and
have effects on the function of pancreas and signal transporting
in various cellular processes. For example, palmitic acid (C16:0), a
biomarker that can distinguish IPD versus T2DM individuals, may
inhibit the metabolic actions of insulin and attenuate insulin signal
transduction [27]; whereas linoleic acid (C18:2,n-6), an important
biomarker for distinguishing healthy control versus IPD and T2DM
individuals, may preserve pancreatic �-cell function and improved
peripheral glucose utilization [28]. These biomarkers (identified
FFAs) may reflect the different features of a glucose metabolic
disorder. Although the mechanisms by which FFAs affect pancre-
atic function are not yet clearly understood, it has recently been
reported that long-chain FFAs amplify insulin secretion from pan-
creatic �-cells by activating GPR40, and that high levels of FFAs
may affect �-cell function by over stimulating GPR40 [29,30]. This
is one possible explanation for the effects of FFAs on diabetes, but it
is not yet known whether the different ratios of various FFAs could
influence GPR40 signaling. The effects of different ratios and inter-
actions of these biomarkers should be further investigated in vitro
and in vivo.
Taken together, these potential biomarkers reflect the deregu-
lation of fatty acid metabolism in diabetic individuals, and might
be beneficial in the diagnosis of or further pathogenesis research in
diabetes.
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Fig. 3. Permutation testing results of the PLS-DA models, which was used to test the possibility of over-fitting: (+) R2 and (�) Q2; (a) healthy control and IPD; (b) healthy
control and T2DM; (c) IPD and T2DM.
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Fig. 4. Loadings plots of free fatty acids from PLS-DA models: (a) healthy control and IPD; (b) healthy control and T2DM; (c) IPD and T2DM. Corresponding loadings plot;
possible biomarkers are marked with a circle.



ogr. B

4

w
d
d
s
t
o
o
t
p
t
m
m
t
s

A

o
T

R

[
[
[
[

[

[
[

[

[
[
[
[

[
[

[
[

L. Liu et al. / J. Chromat

. Conclusions

Metabolomics is now recognized as an independently and
idely used technique for identifying combination biomarkers for
isease. IPD and T2DM are both associated with FFA metabolism
isorders. In this study, metabolomics was used to investigate
erum fatty acid metabolic profiles and biomarkers of healthy con-
rol, IPD and T2DM patients. We have demonstrated the application
f GC–MS coupled with multivariable analysis in the classification
f healthy control, IPD and T2DM patients. Moreover, we iden-
ified potential biomarkers that could be used to distinguish IPD
atients from healthy controls, T2DM patients from healthy con-
rols, and IPD from T2DM patients. Therefore, the detection of FFA

etabolic profiles by an efficient multivariate statistical method
ight be useful in the diagnosis of IPD and T2DM patients, and iden-

ification of IPD individuals from large populations using fasting
erum levels.
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